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Various probe diagnostic methods have been applied to rf plasmas with non-Maxwellian 
electron energy distribution functions (EEDF) and the results of these diagnostic methods have 
been compared. Plasma density and electron temperature were obtained using standard 
procedures from the electron retardation region (classic Langmuir method), the ion saturation 
region, and the electron saturation region of the measured probe I/V characteristic. 
Measurements were made in a 13.56-MHz capacitive argon rf discharge at two gas pressures: 
p=O.O3 Torr, where stochastic electron heating is dominant, andp=0.3 Torr, where collisional 
electron heating dominates. Thus, the measured EEDF at each gas pressure manifests a distinct 
departure from thermodynamic equilibrium being bi-Maxwellian at 0.03 Torr and 
Druyvesteyn-like at 0.3 Torr. Considerable differences in electron density and temperature were 
obtained from the different parts of the probe characteristic and these values differ dramatically 
in many cases from those found from integration of the measured EEDF’s, thus demonstrating 
that using standard procedures in non-Maxwellian plasma can give misleading results. 

I. INTRODUCTION 

Electrostatic probes are indispensable diagnostic tools 
in low-pressure weakly ionized plasmas. The ability to lo- 
cally measure various plasma parameters over a wide range 
of experimental conditions and t? measure the electron 
energy spectrum makes probe methods superior in many 
instances to other plasma diagnostic techniques. The main 
application of probe methods is in the area of low-pressure 
electrical gas discharges where strongly nonequilibrium 
plasmas are typically encountered. Electrons in such plas- 
mas are not in energy equilibrium with ions or neutrals, 
having an electron temperature T, which is usually much 
greater than the ion or neutral temperatures, Ti and TP 
respectively. Moreover, although widely used conventional 
probe theories for electron and ion currents assume a Max- 
wellian EEDF, the electron energy distribution function, 
F(E), in low-pressure discharges is generally non- 
Maxwellian and the electron temperature is usually 
thought of as an effective electron temperature T,, corre- 
sponding to a mean electron energy (E) determined from 
the EEDF. 

In practice one usually neglects non-Maxwellian effects 
in inferring plasma parameters from the probe character- 
istics assuming that a departure of the actual EEDF from 
Maxwellian only affects a small number of electrons with 
energies higher than the energy of the inelastic threshold 
8. Unfortunately, in many cases the EEDF in low- 
pressure discharges is not Maxwellian even in the low- 
energy range where E < E* and application of conventional 
procedures for processing probe characteristics in non- 
Maxwellian plasmas may lead to significant errors in the 
determination of basic plasma parameters. 

The purpose of this work is to compare plasma param- 
eters determined from the measured probe characteristic 
using various well known analysis techniques in a dis- 
charge where the electron energy spectrum is non- 
Maxwellian. The effective electron temperature T,, 

plasma density n, and plasma space potential v, have been 
obtained from the measured probe 1-Y characteristics 
IJ V) using the following techniques: 

(a) Druyvesteyn procedure: differentiating the probe 
characteristic to obtain the EEDF and determining T,, 
and n as corresponding integrals of the EEDF. The plasma 
potential found here is the zero crossing point of the sec- 
ond derivative of the probe current. 

(b) Classical Langmuir procedure applied to the elec- 
tron retardation region of the probe characteristics corre- 
sponding to electron collection when the probe potential V 
is less than the plasma potential. 

(c) Orbital motion limit (OML) theory394 for electron 
collection in the electron saturation region of the probe 
characteristic ( V> V,). 

(d) OML theory for ion collection in the ion satura- 
tion region of the probe characteristic.3’5 

(e) Radial motion theories of ion collection. 13-15 

II. EEDF MEASUREMENTS 

The probe measurements presented here have been 
performed on the axis of the mid plane of a symmetrically 
driven capacitively coupled rf discharge in argon at 13.56 
MHz. A detailed description of the experimental setup and 
measurement procedures is given in Ref. 1. Measurement2 
were made at a discharge current density of 1 mA/cm2 for 
two different gas pressures: p=O.3 andp=0.03 Torr. These 
gas pressure were specifically chosen to provide discharge 
regimes where the electron heating processes that sustain 
the discharge are distinctly different.2 At p=O.3 Torr the 
discharge is collision dominated while at p=O.O3 Torr the 
discharge is sustained mainly through stochastic heating. 
As shown in Fig. 1, the different discharge sustaining pro. 
cesses result in essentially different shapes in the electron 
energy probability function PEW, f(E) 
==E - “aF(e), which would be a straight line for a Max. 
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FIG. 1. The EEPF measured in an argon capacitive rfdischarge at 13.56 
MHz for p=O.O3 and 0.3 Torr. 

wellian EEPF in this representation. The EEPF’s shown in 
Fig. 1 were obtained from the Druyvesteyn formula 

f(~)=2(2m,)“~(e~A)-’ d21/dV2, 

where e and m, are the electron charge and mass, V and Ip 
are the probe voltage and current, and A is the probe sur- 
face area. 

The EEPF at 0.03 Torr can be represented as a bi- 
Maxwellian with a cold-electron group having temperature 
T,,=OSO eV and .density n,=4.2X lo9 cme3 and a hot- 
electron group having Teh= 3.4 eV and izh =2.4 X lo* 
cmva. Note that the departure from a Maxwellian distri- 
bution starts at e~3 eV, which is much Iess than the ex- 
citation energy E* for argon ( 11.55 eV) . Integration of the 
EEDF at 0.03 Torr gives 

n= 
s 

m P(e)de=4.4X lo9 cm-‘3 
0 

and 

T,,=G (E) =2(3n)-’ 
s 

m #(e)de=O.67 eV. 
0 

The EEPF at 0.3 Torr is Druyvesteyn-like: f(e) 
oc exp - ( g/a2) in the energy interval up to E* (where (Y is 
a constant related to the energy gained from the field over 
an electron mean free path length) and then linearly drops 
for E > e* with a hot-electron distribution “temperature” 
T,,=O.71 eV. Integration of the EEDF at 0.3 Torr gives 
n=2.9~ IO9 cmv3 and T,,=3.4 eV. 

In what follows the plasma parameters obtained from 
EEDF measurements are considered as a reference to 
which plasma parameters obtained using conventional pro- 
cedures, based on assuming a Maxwellian EEDF, will be 
compared. 

Ill. LANGMUIR PROCEDURE 

The full I/V characteristics measured by the probe are 
shown in Figs. 2 and 3 for 0.03 Torr and 0.3 Torr, respec- 
tively. The first derivative 1;(V) is also shown in each 
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FIG. 2. Probe I-V characteristic: Ip and its tirst derivative 1; for p=O.O3 
Torr. The plasma potential V, and the electron saturation current 1, 
correspond to the maximum of 1;. 

figure and the plasma potential (the probe voltage where 
1; is maximum) is identified. Finding the plasma potential 
by differentiating the probe characteristic is more definitive 
and accurate than finding it from a semilog plot of the 
electron current versus the probe potential. In Fig. 4, probe 
characteristics are give? in semilog scale and plasma po- 
tential, determined from the maximum of Ii, is indicated 
by a horizontal arrow. For 0.03 Torr the plasma potential 
corresponds to an inflection point rather than the crossing 
point between extrapolated lines of the probe characteris- 
tic. (Extrapolating lines tangent to the probe characteristic 
to identify the crossing point is a procedure recommended 
in some texts to find plasma potential.) Similar to the 
EEPF the probe characteristic for 0.03 Torr also demon- 
strates a two-electron temperature structure with T,=O.73 
and Th=4.2 eV. Although these temperatures differ some- 
what from those found from the EEPF shown in Fig. 1, 

Ieo 

--I 
-57) -40 -30 -20 -10 0 

probe voltage (V) 

FIG. 3. Probe I-V characteristic: I, and its first derivative 1; for p=O.3 
Torr. The plasma potential V, and the electron saturation current 1, 
correspond to the maximum of 1;. 
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FIG. 4. The electron current to the probe in semilog scale. The horizontal 
arrows show the plasma potential and the vertical arrows show the float- 
ing potential. 

this difference seems reasonable since in general 1, is not 
proportional to its second derivative and only for a Max- 
wellian (exponential) EEPF is I, cc 11. 

The plasma density may be obtained from the Lang- 
muir formula 

I( V,) =eAn ( TJ27TmJ 1’2. 

For I,( V,) and T,= T,, nL=3.3 X 10’ cmv3 while the den- 
sity found from the I,( V,) at the crossing point of the 
extrapolated curves is n,=5.9 X lo9 cmv3. In a corre- 
sponding way, using T,, gives ni=3.5 X lo9 cmv3 and 
L$= 4.2 x lo9 cmp3. All these values are close to the true 
value n=4.4X lo9 cm- 3 found through integration of the 
EEDF. 

The semilog plot of I,(V) for 0.3 Torr is a bit puzzling 
since there is no sign of a break in this curve at the plasma 
potential where I;(v) is at a maximum. Following the 
standard prescription for processing the probe characteris- 
tic, two linear parts of the function In I,(V) are extrapo- 
lated to their crossing point to determine the plasma po- 
tential giving a plasma potential which is 3 V lower than 
the true plasma potential designated in Fig. 4 by a hori- 
zontal arrow. The linear part of this curve, which appears 
around the floating potential (shown by the vertical ar- 
row), gives an “electron temperature” of 1.37 eV and cor- 
responding values of its and n, are 4.5 X lo9 cm-s and 
5.2X lo9 cmm3. If one uses the value of TeE found from 
integrating the EEDF the corresponding values for & and 
nzr are 2.9~ 10’ cmu3 and 3.3 X lo9 cmm3. The standard 
procedure for determining the electron temperature gives a 
value 2.5 times less than T,, found from the EEDF while 
the values of plasma density are not too far from those 
found from the EEDF. In the cases of 0.03 Torr and 0.3 
Torr, the plasma density ni found from electron saturation 
current I,( V,) matches the true plasma density better than 
if one uses the plasma potential and effective electron tem- 
perature found through differentiation of the probe char- 
acteristic. 

It is interesting to note that essentially different num- 
bers for the normalized floating potential r$=eAVf/T,E 
follow from the probe characteristics, where AV, is the 
probe floating potential referenced to the plasma potential 
AVf= V,- V,, thus, + 7.8 forp=0.03 Torr and $-=2.4 
for p=O.3 Torr. Under the present experimental conditions 
with the probe radius a=6.35 X lOa cm being close to the 
Debye length ko, for a Maxwellian EEDF one should ex- 
pect qf in both cases to be 

qf= l/2 ln[b2/c2(mi/3.6m,)] ~4, 
where b is the ion collection sheath radius, and mi and m, 
are the electron and ion mass, respectively. The differences 
between the experimentally measured values of 177 and 
those derived here for the Maxwellian EEDF are due to 
the shape of the high-energy part of the measured EEDF 
since a floating probe only collects those electrons with 
energies higher than the energy barrier created by the float- 
ing potential. 

IV. USING OML THEORY FOR THE COLLECTlON OF 
ELECTRONS 

OML theory was introduced by Langmuir and Mott- 
Smith3 and can be used to calculate the probe current of 
attracted (accelerated) particles. This theory implies a 
thick, collisionless sheath (&sb$a), where & is the 
electron or ion mean free path. Assuming a Maxwellian 
energy distribution in the unperturbed plasma, the follow- 
ing simplified formula for a cylindrical probe may be used 
to determine the electron current in the OML regime:’ 

Z’e,i=2/ &Aen( T,J2rm,i) “2(eVJTe,i+ 1) “’ 

dZ/rAen ( ( e VP 1 /m,i) “2. 

Applied to the electron current, this formula has been suc- 
cessfully used by many authors. Good agreement with the 
classic Langmuir procedure for inferred plasma density has 
been demonstrated by Verweij4 for gas pressures up to 20 
Torr and plasma density up to 1012 cmd3 using a very thin 
(a= 1 X 10d3 cm) cylindrical probe. Since normally 
/z,,il, apparently the limit of applicability on OML theory 
is not as strict for electron collection as it is for ion collec- 
tion. 

The calculation of LaframboiseS based on the more 
complete theory of Bernstein and Rabinowitz6 showed that 
the OML limit is achieved for d,~=a. The Debye lengths 
calculated using values of n and T,, found from the mea- 
sured EEDF for 0.03 and 0.3 Torr are 9.1 X 10F3 cm and 
2.5 X lo-’ cm, respectively, while corresponding electron 
free paths are 8.3 cm and 0.095 cm. Thus the requirements 
for applicability of the OML theory are satisfied for the 
probe radius (a= 6.35 X 10v3 cm) used in this experiment. 

The square of the electron current 1: ( VP) versus probe 
voltage (VP= I’- V,) for two gas pressures is plotted in 
Fig. 5 along with the linear extrapolation of each curve 
back to the abscissa. In accordance with OML theory the 
slope of the linear extrapolation yields the plasma density 
without knowledge of the electron temperature. Values of 
plasma density for 0.03 and 0.3 Torr are nOMLe = 3.7 
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FIG. 5. The electron probe current squared vs probe voltage for p=O.O3 
and 0.3 Torr. 

X lo9 cmm3 and 3.6~ lo9 cmB3, respectively, which are in 
good agreement with those values obtained from the 
EEDF. OML theory also allows one to find the electron 
temperature from the difference between the plasma poten- 
tial and the crossing point on the voltage axis of the ex- 
trapolated 1:(v) line but this can only be done if the 
plasma potential is known beforehand from an indepen- 
dent measurement. The electron temperature found in this 
way is 0.65 eV for 0.03 Torr, which agrees very well with 
T,, while for 0.3 Torr it is 1.23 eV, almost three times less 
than Tep Note that generally the function I:(V) changes 
slope with probe voltage and therefore n, and T, obtained 
using this procedure are quite subjective and largely depen- 
dent on the range of the probe characteristic, thus suffering 
from a rather large degree of uncertainty. 

V. USING ION PART OF THE PROBE 
CHARACTERISTIC 

The ion part of the probe characteristic is frequently 
used in plasma diagnostics. In this method the electron 
temperature is found from the slope of the probe charac- 
teristics near the floating potential VP For a single probe 
the electron temperature may be written as 

= eIi~( died V-dIi/d V) -I evaluated at V= V,-, 

where iif is an extrapolation of the ion current to the 
probe. Extrapolation of the ion current towards the plasma 
potential is somewhat arbitrary and could result in m is- 
leading conclusions. Two commonly used extrapolation 
techniques, linear and parabolic, are shown in Fig. 6. For 
0.3 Torr, the parabolic approximation crosses the zero cur- 
rent line near the plasma potential. For 0.03 Torr, the 
crossing takes place near the floating potential. The latter 
suggests an absence of electron current at a probe potential 
lower than the floating potential corresponding to an 
EEDF which is severely depleted of high-energy electrons. 
In fact, for 0.03 Torr, the measured EEDF demonstrates 
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an excessive number of high-energy electrons. This exam- 
ple shows how m isleading a parabolic approximation of ion 
current can be in the evaluation of the electron current for 
V< Vf and in finding the plasma potential. 

Since at the floating potential the probe is accessible 
only to electrons having an energy larger than e 1 Vf- V, 1 
the electron temperature obtained from the slope of the 
probes I-V characteristic at the floating potential, Irf, is 
governed by the high-energy part of the EEDF and thus is 
valid only for an EEDF which is Maxwellian over a very 
large energy range. Note that in a majority of cases for 
low-pressure gas discharges, a departure from Maxwellian- 
like EEDF takes place at energy less than e 1 Vf- V,] . 

Using a linear extrapolation of the probe ion currents, 
as shown in Fig. 6, the electron temperature Ti found from 
the ion part of the probe characteristics are 3.6 eV for 0.03 
Torr and 1.4 eV for 0.3 Torr, which are in dramatic con- 
tradiction to the corresponding values of TeE (0.67 eV and 
3.4 eV, respectively) found from the EEDF’s. Ironically, 
these errors in TL and- their trend with gas pressure are in 
general agreement with elementary theory of gas discharge 
plasmas assuming a Maxwellian EEDF (see Von Engel,* 
for example). 

Calculation of the plasma density from the ion current 
can be carried out in a number of ways. The most popular 
approach, introduced by Langmuir, is to use OML theory. 
OML theory is widely used for two reasons: first, when 
applicable it is easy to use since it does not require knowl- 
edge of the electron temperature, and plasma potential and 
second, in many experiments I: is found to be a linear 
function of the probe voltage and this behavior is expected 
when OML theory applies. Unfortunately, as Langmuir 
and many others have pointed out, this is not a sufficient 
condition to ensure validity of OML theory. As shown in 
Fig. 7 the values of 1; versus probe voltage are linearly 
related at large negative probe voltages where J 1, ) ( 1 li I. 
The plasma density predicted using OML theory for 0.03 
and 0.3 Torr are 1.1 X 10” and 9.6~ lo9 cm-s, respec- 
tively, and these values of plasma density differ by only 2% 
from those calculated with Laframboise theory. For the 
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FIG. 7. The ion probe current squared vs probe voltage for p=O.O3 and 
0.3 Torr. 

probe radius and Debye length in this experiment the 
Laframboise and OML theories actually coincide. For ei- 
ther derivation the density appears to be 2-3 times larger 
than the actual values determined from the EEDF’s. 

Exaggerated values for plasma density obtained from 
ion current using OML theory were noted by Langmuir 
and Smith and Plumb’ and also in more detailed studies of 
Sonin” and Shih and Levi. l1 It has been shown (see Ref. 
11 and literature therein) that ion-ion and ion-atom colli- 
sions as well as the finite length of the cylindrical probe 
significantly affect ion orbital motion and tend to destroy 
it. As a result, the ion current to the probe under such 
conditions corresponds to radial ion motion rather than to 
orbital motion. This has been shown in experiments.‘0p12 
Shih and Levi showed that the OML regime for a cylin- 
drical probe is destroyed when n/U < (eV/Ti) 1’2> 1, 
where 1; ’ =/2,‘+&’ and represents the ion mean free 
path accounting for both ion-neutral (in) and ion-ion (ii) 
collisions. Since V,, is usually tens of volts and Ti is.close to 
room temperature and is tens of m illivolts, the OML re- 
gime is already destroyed at very low gas pressures (in our 
experiment with a=6.35 X 10m3 cm at p > 0.02 Torr). 

The unsuitability of OML theory for inferring plasma 
density from the ion current inevitably complicates the 
analysis. One difficulty is that alternatives, such as, the 
radial motion theories of Allen, Boyd, and Reynolds13 pre- 
sented by Chen14 for cylindrical probes (ABRC theory), as 
well as Laframboise calculations5 are difficult to use in 
practice since they are given graphically by sets of normal- 
ized ion current/voltage characteristics for discrete values 
of a//zD which depend on plasma density. This procedure 
can be done more easily using Sonins normalization requir- 
ing only one universal curve. Also these theories require 
knowledge of the probe sheath voltage V,, which is found 
from the measured floating potential assuming a Maxwell- 
ian EEDF as follows: 

VP= V- Vf- T,/2e h( b2m/a2m,). 

Since the effective ion collection radius b is unknown a 

priori, inference of the plasma density from the measured 
ion current and the floating potential requires a cumber- 
some iteration procedure. This is why these theories are 
used mostly in confirmatory model2 (confirming parame- 
ters found in advance using another technique) rather than 
in a predictive mode. 

Additional problems arise for non-Maxwellian EEDF 
when TL found from the ion part of the probe characteris- 
tics does not correspond to the mean electron energy or 
T,, Under such conditions the use of Ti leads to an error 
in evaluating the probe sheath voltage VP and to an error in 
calculating the normalized ion current Ji in the ABRC 
theory: 

Ii=Ji(-eV/T,a//ZD) [AE~ea2(2T~/tni)“2], 

where e. is the vacuum permittivity. 
Knowing the Debye length from EEDF measurements 

for 0.03 Torr we have evaluated Ji (using Chen’s curves) 
and found the values of the ion current Ii for q = - eV/ 
T,=20 at two values of electron temperature Tt and T,, 
It appears that 1i( TL) is eight times larger than corre- 
sponding experimental values while 1i( T,,) is larger by 
only 60%. At 0.3 Torr the probe sheath appeared to be 
collision dominated (&c(b) and ABRC theory is not ap- 
plicable. Nonetheless, the use of two electron temperatures 
Ti and T,, gives corresponding theoretical values for I, 
that are 40% smaller and 80% larger than the measured I? 

For evaluation of the plasma density when the ion cur- 
rent is controlled by radial motion we used an approach 
introduced by Kagan and Pereli (KP) which is more 
convenient to use than the previous theories. With this 
approach there is no need to iterate to find the plasma 
density but uncertainty in the probe sheath voltage V,, still 
remains for a non-Maxwellian EEDF. In this approach ion 
current to the probe is considered as space-charge-limited 
current given by the Child-Langmuir Law for a cylindrical 
geometry: 

where (-P”) is a tabulated function of b/a. The ion cur- 
rent is governed by the collecting surface which is b/a 
times larger than the probe surface A, such that 

In using this approach one finds ( -fl’) from CL Law and 
after determining b/a the plasma density can readily be 
found from the ion current (second) equation. Again, the 
departure from a Maxwellian EEDF or differences in T,, 
and Tt affect the inferred value of plasma density. This 
comes about in two ways, through the dependence of 
( -p’) and b from VP in the CL Law and via the depen- 
dence I,= bTi’2 in the ion current equation. Evaluation of 
b/a for both pressures and 1 VP 1 = 30 V gives b/a= 13, 
which corresponds to a b//2,=0.58 for 0.03 Torr and b/;li 
=5.8 for 0.3 Torr. Apparently, in the second case the 
probe sheath is in a collision-dominated regime and neither 
ABRC nor KP theory is applicable. The plasma density 
&, calculated using the electron temperature obtained 
from the ion part of the probe characteristic (Tt for 0.03 
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TABLE I. Plasma parameters inferred using various procedures. 

Parameter p=O.O3 Torr p=O.3 Torr Notes 

n (cm-‘) 4.4 x loy 
Tee (ev) 0.67 
a, fcm) 9.1 x 10-3 
n, (cm-‘) 4.2~ lo9 

T, W) 0.50 

nk (cm-‘) 2.4~ 10’ 
Tefi (W 3.4 

2.9. lo9 
3.4 
2.5. IO-1 
. . . 

. . . 

. . . 
(0.71) 

(a) Druyvesteyn procedure (from EEDF) 

&z-8.3 cm, p=O.O3 Torr; 0.95 cm, p=O.3 Torr 
,+ 1.4x 10-l and 1.4~ lo-’ cm 
a=6.35~ 10e3 cm 
A, is estimated from argon cross 
sectton at e=3/2 r,, 
di found from charge-exchange 
cross section. 

T,, for p=O.3 Torr is the decay 
parameter of EEPF for high-energy 
electrons. 

n, (cm.m3) 
T,L (ev) 
T, CeY) 
TJ, (ev) 
ner (cm-? 
n% (cmS3) 
n$ (cme3) 
6 

3.3x109 
0.73 
0.73 
4.2 
5.9.109 
3.5. IO9 
6.2.10’ 
7.8 

4.5 x 109 
1.37 
? 

_ 1.37 
5.2.10s 
2.9. lo9 
3.3. 10Y 
2.4 
(b) Langmuir procedure [from In, I,( v)] 

The plasma potential was found 
through differentiation of the probe 
characteristics. 

These values were found using 
T,, from EEDF. 

nhm (cm-‘) 3.7x 10s 
Tom (ev) 0.65 

Ti (eY) 3.6 

3.6x lo9 
1;2 

Ion part of the probe characteristic 
1.4 

(c) OML theory for electrons 

Found with known V, 

Assumes a Maxwell ian EEDF 

nb, (cma3) 9.6~ lo9 Needs no knowIedge of T, 
(d) OML theory for ions 

m-~)&p 180 ~A/29 PA ’ 
ii( Ted&p 15 j.~A/9 /LA 
a/a 0 0.7 

9.4 ~A/13 /LA q= -eVJT,=20 
36 ~A/20 PA A, was found from EEDF 
0.25 collisional sheath at p=O.3 Torr 

(e) Allen, Boyd, Reynolds, Chen theory 

nh (cm-‘) 1.8x lo9 2.9 x lo9 
now (cm-‘) 4.1x109 1.8~10~ 
b/a 13 13 
b//z, 0.58 5.8 (e) Kagan and Perel theory 

VP== -30 v 
Collisional sheath at p=O.3 Torr 

Torr) is 2.5 times less than that from the EEDF whereas 
using the true value of TeK, noRp is just ‘7% less than that 
from the EEDF. Application of KP theory forp=0.3 Torr 
(where this theory is invalid) using Tt gives nkP equal to 
that from the EEDF while using Tef gives n°Kp that is 60% 
less than that from the EEDF; 

potential Vf and the voltage across the sheath of the float- 
ing probe AVf which can be calculated only for a known 
EEDF, otherwise the use of TL and T,, for calculation of 
AVf is incorrect. 

Vi. CONCLUSION 

The result of determining the plasma parameters from 
the various procedures discussed here is summarized in 
Table I. As expected a departure of the EEDF from Max- 
wellian most strongly affects the electron temperature val- 
ues when it is found from the probe characteristic in the 
neighborhood of the floating potential. This applies to any 
type of the tloating probe measurement, i.e., the ion part of 
a single probe characteristic, as well as, double and triple 
probe techniques. When plasma density is inferred from 
ion current, the plasma potential VP must be known since 
VP = V-- FI’, t’, is usually found from the measured floating 

As shown by Vasileva t6*17 the shape of the EEDF af- 
fects the potential distribution around the probe and hence 
influences the current of attracted particles. Particularly, it 
has been shown l&l7 that the Debye length and ion current 
density in the Bohm-like expression for ion current are 
governed by the so-called screening temperature T, but 
not by T,, such that li cc Tz” and ilD a Tz”. The screen- 
ing temperature T, is determined as follows: 

and for a bi-Maxwellian EEDF as found here for 0.03 Torr 

T,=n[nJT,+n~/Te~] -‘,z T,, . 

3662 J. Appl. Phys., Vol. 73, No. 8, 15 April 1993 Godyak, Piejak, and Alexandrovich 3662 

Downloaded 27 Aug 2001 to 143.248.22.140. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



Thus, as seen in these formulas, the ion flux to the 
probe and the Debye length are governed by the low- 
energy part of the EEDF while the “floating” voltage A Vf 
and the electron temperature Tk (found from the ion part 
of the probe characteristic) is controlled by the high- 
energy part of the EEDF. These conclusions are consistent 
with experimental results given in Table I for plasma pa- 
rameters inferred from the ion part of the probe character- 
istic. Note also that the true value ilr, should be determined 
through integration of the EEDF. For 0.03 Torr the true 
value of /2, is determined by T, since, within an accuracy 
of I%, T,==T, 

As for plasma parameters obtained using the classical 
Langmuir procedure, these are in reasonable agreement 
with those found from EEDF for the case of 0.03 Torr 
where the majority of electrons obey a Maxwellian distri- 
bution. Nonetheless, the temperature of the low-energy 
electrons found from a semilog plot of I,( V) is 50% larger 
than that found from I:( v>. For a Druyvesteyn-like dis- 
tribution (p=O.3 Torr) there is a fundamental problem in 
finding the slope of In I,( v). The small linear part of 
ln le( V) in Fig. 4 appears to be irrelevant to the effective 
electron temperature and generates erroneous values for 
plasma parameters when used in calculations. An addi- 
tional problem with a Druyvesteyn-like EEDF is the un- 
certainty in tinding the plasma potential since there is no 
knee in the semilog plot of the probe characteristic mea- 
sured with a thin probe. Druyvesteyn-like EEDF’s are typ- 
ical at relatively high gas pressure where the probe size 
limitations (a&l.,) require the use of a very small probe. 
The plasma potential can confidently be found in the zero 
crossing point of the second derivative of the probe char- 
acteristic: I”( V) =O. But if one differentiates the probe 
characteristic, i.e., knows the EEDF, then there is no need 
of using the Langmuir procedure based on an assumption 
of a Maxwellian EEDF. 

The shape of the electron part of the probe character- 
istics for f(e) a exp( --~/a) k, where a and k are con- 
stants, has been analyzed by Vasileva16 and Ershov et al. ‘* 
They showed that the slope of d In i,( V)/dVin the energy 
interval about the mean electron energy (E) =3/2 TeE, ad- 
jacent to the plasma potential gives an electron tempera- 
ture which is not too far from Terr; but some independent 
method of fmding the plasma potential is still needed to 
practically implement this idea. 
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Application of the traditional techniques for process- 
ing probe characteristics obtained in nonequilibrium 
plasma may lead to a significant error (up to 2-5 times) in 
defining the basic plasma parameters. The worst case oc- 
curs when inferring the electron temperature and plasma 
density from the ion part of the probe characteristic (also 
in double and triple probes) where the inferred value of T, 
represents only the small portion of electrons which are in 
the high-energy tail of the EEDF. Unless there is a strong 
inguence of electron-electron interaction, the energy distri- 
bution in the tail of the EEDF differs from that of the main 
body where the EEDF is close to Maxwellian. The depar- 
ture from a Maxwellian distribution for high-energy elec- 
trons is most common in low-pressure gas discharges used 
in practical applications. The degree of departure of the 
EEDF from Maxwellian in a particular discharge and 
hence the error introduced in determining the plasma pa- 
rameters from a probe diagnostic is not known in advance. 
Therefore, measurement of total probe characteristic fol- 
lowed by differentiation to get the EEDF is the most cer- 
tain and reliable way to use probe diagnostics. . _ 

‘V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, Plasma Sources 
Sci. Teehnol. 1, 36 (1992). 

“V. A. Godyak and R. B. Piejak, Phys. Rev. Lett. 65, 996 (1990). 
3 I. Langmuir and H. Mot&Smith, General Electric Rev. 27,449 ( 1924). 
“W. Verweij, thesis, University of Utrecht, 1960. 
‘J. G. Laframboise, Report No 100, University of Toronto, Institute of 
Aerospace Studies, 1966. 

61. B. Bernstein and I. N. Rabinowitz, Phys. Fluids 2, 212 (1959). 
‘P. M. Chung, L. Talbot, and K. J. Touryan, Electric Probes in Sation- 
ary and Flowing Plasmas: Theoty and Application (Springer, Berlin, 
Heidelberg, New York, 1975). 

a A. von Engel, Ionized Gases (Clarendon, Oxford, 1955). 
‘D. Smith and I. C. Plumb, J. Phys. D 6, 196 (1973). 

“A. A. Sonin, AIAA 4, 1588 (1966). 
“C. H. Shih and E. Levi, AIAA 9, 1673 (1971). 
‘*B M. Annaratone, M. W. Allen, and J. E. Allen, J. Phys. D 25, 417 

(i992). 
I35 E Allen, R. L. F. Boyd, and P. Reynolds, Proc. Phys. Sot. B 70, 297 

(l9i7). 
14F. Chen, Plasma Phys., J. Nucl. Energy Part C 7, 147 (1965). 
” Yu. M. Kagan and V. I. Perel, Usp, Fiz. Nauk. 81, 409 (1963) [Sov. 

Phys. Usp. 6, 767 (1964)]. 
161 A. Vasileva, Teplofiz. Vys. Temp. 12, 29 (1974) (in Russian). 
I711 A. Vasileva. Tenlofiz. Vvs. Temn. 12, 473 f 1974) (in Russian). 
“A P. Ershov, V. A. Dovzhknko, A: A. Kuzovnikov,.and S. N. Gks, Fiz. 

Piasmy 7, 609 (1981) [Sov. J. Plasma Phys. 7, 334 (1981)]. 

Godyak, Piejak, and Alexandrovich 3663 
Downloaded 27 Aug 2001 to 143.248.22.140. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp


